欧美3p精品一区二区,亚洲一二三区影视大全,欧美日韩一区高清在线观看,欧美大粗爽一区二区三区

技術(shù)文章

日本次世代電池研究成果

日本次世代電池研究成果

 

1.サステナブルモビリティ

持続可能な社會(huì)を?qū)g現(xiàn)するためには、化石燃料の消費(fèi)が少なく、CO2 の排出の少ないモビリティが必要である。そのために、車両の小型?軽量化やエンジンの低燃費(fèi)化など、多くの取り組みが行なわれてきた。ハイブリッド車は、低燃費(fèi)と走行性能の両立という観點(diǎn)から、1997 年の初代プリウスの発売以降、車種と臺(tái)數(shù)を増やしている。現(xiàn)在の主なハイブリッド車は、ガソリンを給油して、エンジンとモータ(発電機(jī))、そして蓄電池との間での効率的なエネルギーのやりとりをすることにより低燃費(fèi)を?qū)g現(xiàn)している。

プラグインハイブリッド車(図1)は、住宅などの電源から車両に搭載された蓄電池に充電することにより、従來のガソリンのみを給油するハイブリッド車に比べて、一次エネルギーの多様化に対応できるとともに、CO2 の排出やエネルギーコストの低減も期待できる。CO2 の排出やエネルギーコストの低減効果は、電気のみで走行できる距離が長(zhǎng)ければ長(zhǎng)いほど大きくなるので、蓄電池のエネルギー容量と出力拡大への期待が大きい。

図1 プラグインハイブリッド図1 プラグインハイブリッド

電気自動(dòng)車は、例えばゴルフカートやフォークリフトなど古くからさまざまな形で実用例があり、さらには新しい小型のモビリティの試作車やロボットなどでもその動(dòng)力として適用されている。電気自動(dòng)車が、走行時(shí)のCO2 排出がゼロで、エネルギーコストも小さいことは、上記のプラグインハイブリッド車の例をみるまでもなく明らかだが、大量普及のためには、やはり、蓄電池のエネルギー密度の大幅な向上による航続距離の延長(zhǎng)と電池パックの小型軽量化の両立が大の課題である。

2. 蓄電池

2.1「佐吉の電池」

豊田佐吉翁は、トヨタ自動(dòng)車の母體となった豊田自動(dòng)織機(jī)の創(chuàng)始者である。1925 年、佐吉翁は帝國(guó)発明協(xié)會(huì)に賞金を寄付して、ガソリン以上のエネルギー密度の蓄電池の公募を行っている。いうまでもなく、この「佐吉の電池」は80 年以上経過した現(xiàn)在でも実現(xiàn)していないが、そのビジョン(図2)は現(xiàn)在社會(huì)でもそのまま適用できるものである。

 

図2 革新型電池の研究ビジョン図2 革新型電池の研究ビジョン

 

サステナブルモビリティは、「佐吉の電池」が求めるエネルギー密度の1/5 程度で、きわめて実現(xiàn)性が高まると考えている。しかしながら現(xiàn)狀のNi -水素化物電池や、Li イオン電池では、その理論容量でも、1000 ~ 2000 Wh/L のエネルギー密度には及ばない。これまでの蓄電池は、Ni -水素化物電池やリチウムイオン電池というような新しい電池原理の発明と合わせて、水素吸蔵合金やリチウム酸化物あるいは種々のカーボン材料の適用により、その性能を段階的に向上させてきている。 今後の革新型の電池の候補(bǔ)として、全固體電池や金屬空気電池などが挙げられるが、やはりその実現(xiàn)のためには、その電極の活物質(zhì)や固體電解質(zhì)などの構(gòu)成材料のブレイクスルーが必要不可欠である。

 

2.2 全固體電池

従來のリチウムイオン電池に一般的に使われている電解液を、固體電解質(zhì)に置き換えることにより、コンパクト化、部品點(diǎn)數(shù)や工程の削減、充放電條件の拡大などの可能性があり、それらを総合して高容量化が期待される。図3に、全固體電池の電極斷面を切斷研磨し、走査電子顕微鏡で観察した結(jié)果を示す。

 

この全固體電池の電極は、上部の黒鉛と固體電界質(zhì)の負(fù)極合材部、正極と負(fù)極を仕切る固體電解質(zhì)単層部、リチウム酸化物と固體電解質(zhì)からなる正極合材部の三層で構(gòu)成される。全固體電池においては、電極の活物質(zhì)と固體電解質(zhì)をどのように混合してイオンの伝導(dǎo)パスを形成するかが、電池特性の向上に直結(jié)するので、このような固さの異なる電極を平滑に切斷研磨し、ミクロンオーダーで観察する技術(shù)は、きわめて重要な研究開発ツールである。

図3 全固體電池電極斷面の走査電子顕微鏡観察図3 全固體電池電極斷面の走査電子顕微鏡観察

全固體電池に適用する可能性のある固體電解質(zhì)として、固體內(nèi)のリチウムイオン伝導(dǎo)が高い種々の材料が提案されている1)~3)。ただし、電池の出力は、電解質(zhì)のバルク內(nèi)のリチウムイオン伝導(dǎo)だけでなく、電解質(zhì)の粒子間の伝導(dǎo)や電極活物質(zhì)と電解質(zhì)の界面、さらには、正負(fù)極の活物質(zhì)內(nèi)でのリチウムイオン伝導(dǎo)と電子伝導(dǎo)が影響しており、それらに関連して多くの研究課題がある。 全固體電池に適用される固體電解質(zhì)や活物質(zhì)は、結(jié)晶やガラスなど、さまざまな構(gòu)造のものがあるが、その多くはそもそもの結(jié)晶性がそれほど高くないことに加えて、リチウムの挿入脫離により、さらに結(jié)晶性が低下するケースも多い。図4に、イオン伝導(dǎo)度では高性能を示すLGPS 型の結(jié)晶構(gòu)造を有する固體電解質(zhì)の透過電子顕微鏡による観察結(jié)果4)を示す。

図4 LGPS 型固體電界質(zhì)の透過電子顕微鏡観察図4 LGPS 型固體電界質(zhì)の透過電子顕微鏡観察

この材料においては、結(jié)晶構(gòu)造の詳しい解析により、結(jié)晶內(nèi)に高速イオン伝導(dǎo)パスが存在することが明らかになっている5)。そのため結(jié)晶性を高めることができれば、イオン伝導(dǎo)度を向上させることができる。そこで、結(jié)晶性とイオン伝導(dǎo)度との関係を検証するために、熱処理?xiàng)l件を変えた試料ごとに透過電子顕微鏡の回折図形を測(cè)定し、その解析により結(jié)晶化度を算出した。それとイオン伝導(dǎo)度との関係を図5に示す。

図5 固體電界質(zhì)の結(jié)晶化度とイオン伝導(dǎo)度図5 固體電界質(zhì)の結(jié)晶化度とイオン伝導(dǎo)度

結(jié)晶化度の向上により、イオン伝導(dǎo)度が急激に向上することが確認(rèn)できる。このように透過電子顕微鏡の回折図形を用いて、結(jié)晶化度を定量的に評(píng)価することにより、固體電解質(zhì)材料の研究開発や品質(zhì)管理を系統(tǒng)的に進(jìn)めることができる。またこの手法は、固體電界質(zhì)だけでなく、結(jié)晶化度で性能が大きく変化する活物質(zhì)に適用できるとともに、他の分野のさまざまな機(jī)能材料にも適用可能である。 現(xiàn)在、全固體電池において、イオン伝導(dǎo)度が高く電池に適用する研究がもっとも進(jìn)んでいるのは、硫化物固體電解質(zhì)であるが、材料としての種々の特性を考慮した場(chǎng)合、酸化物固體電解質(zhì)への期待も大きい。ただし、酸化物固體電解質(zhì)は、硫化物固體電解質(zhì)に比べイオン伝導(dǎo)度が低く、その向上が優(yōu)先課題である。図6には、酸化物固體電解質(zhì)として、研究開発が進(jìn)んでいるリチウム?ランタン?ニオブ酸化物(LLNO)の単結(jié)晶の走査型透過電子顕微鏡による電子線回折図形6)を示す。

図6 酸化物固體電解質(zhì)の電子線回折図形図6 酸化物固體電解質(zhì)の電子線回折図形

LLNO 単結(jié)晶は、硫化物固體電解質(zhì)のようにアモルファスやガラスとの混合相ではなく、結(jié)晶単層で構(gòu)成されているが、電子線回折図形には特徴的なサテライトが観察される。

図7 酸化物固體電解質(zhì)の透過電子顕微鏡観察図7 酸化物固體電解質(zhì)の透過電子顕微鏡観察

図7に、透過電子顕微鏡観察結(jié)果を示す。電子線回折図形にみられたサテライトは、格子像で観察されるランタン原子の濃度ゆらぎによるもので、これと交互に位置するリチウム原子も同時(shí)に濃度ゆらぎをもって分布していることが推測(cè)される。これらの濃度ゆらぎの狀態(tài)や、充放電時(shí)の挙動(dòng)を調(diào)べることにより、さらなるイオン伝導(dǎo)度の向上が期待できる。

 

2.3 金屬空気電池

図8に、リチウム空気電池の原理図を示す。金屬空気電池は、負(fù)極で金屬の溶出、正極では溶出した金屬が空気中の酸素と反応して放電析出物となることで放電することは古くから知られており、すでに亜鉛空気電池などは一次電池として実用化されている。これまでは、その逆反応による充電は難しいとされてきたが、近の研究事例で、充電が可能なものがいくつか報(bào)告されている7)8)。

充電反応は、負(fù)極での金屬の析出と、正極での放電析出物の還元という反応が予想されるので、負(fù)極では、平坦に金屬を析出させること、正極では低いエネルギーで還元反応を起こすような觸媒の探索が研究課題となる。

図8 リチウム空気電池の原理図図8 リチウム空気電池の原理図

のリチウム空気電池の研究において、正極では、カーボン材料の表面構(gòu)造により、觸媒金屬を修飾しなくても、充放電反応が可能なことはわかっているが、その充放電容量は理論容量に及ばない。図9には、金屬空気電池の正極に種々のカーボンを適用して、その比表面積やラマン分析のD/G 比と放電特性との関係を示す。従來、用いられてきたカーボンの構(gòu)造因子では、金屬空気電池の正極材料としての放電量は説明できず、電池特性の特性に寄與する構(gòu)造を定量的に特定することが必要であるが、これはきわめて困難で研究開発の大きな障害となっている。

図9 金屬空気電池の放電容量とカーボンの分析結(jié)果 図9 金屬空気電池の放電容量とカーボンの分析結(jié)果図9 金屬空気電池の放電容量とカーボンの分析結(jié)果

これまで多くの分野では、種々のナノカーボンが研究されてきており、これらの知見がこのようなカーボンの構(gòu)造定量化の標(biāo)準(zhǔn)試料となり、種々の電池の材料設(shè)計(jì)に活用されることを期待したい。

3. 新しい分析技術(shù)への期待

ここまでは、電池とその構(gòu)成材料の研究事例を述べたが、さらにそれらのいずれの研究の基盤技術(shù)についても多くの共通技術(shù)がある。

例えば、SPring-8 などの放射光を用いた分析技術(shù)は、すでに半導(dǎo)體材料や自動(dòng)車用排ガス觸媒の研究開発に活用されているが、電池の材料開発においてもその構(gòu)成材料の構(gòu)造解析や反応プロセスのin-situ 解析などにおいてニーズは多い。また、JPARC に代表される中性子を用いた解析は、水素やリチウムなど軽元素を含む材料の構(gòu)造解析で電池用の新材料の発見のための有力なツールとなっている。

また、原理計(jì)算や分子軌道法による構(gòu)造解析や、Phase-Field 法によるメソスケールの組織解析、そして、マテリアルインフォマティクスによる材料探索も有力な材料研究ツールとして活用が進(jìn)んでいるが、さらに、電池などの材料開発への適用拡大も始まっている。

これらの基盤解析技術(shù)は、電池の研究においては、京都大學(xué)に設(shè)立されているNEDO の革新型蓄電池の基礎(chǔ)研究拠點(diǎn)において、さらにその高度化と革新型電池の研究開発への適用拡大が進(jìn)められている。

また、全固體電池の研究開発を、産學(xué)連攜と民間の水平分業(yè)や垂直連攜を組み合わせた研究組合のLIBTEC において実施するプロジェクトも、今春から開始した。これらの拠點(diǎn)により、電池の研究基盤と人材育成がより加速されることを期待したい。

聯(lián)系人:林經(jīng)理
地址:深圳市龍崗區(qū)龍崗街道新生社區(qū)新旺路和健云谷2棟B座1002
Email:akiyama_linkkk@163.com
郵編:
QQ:909879999

深圳市秋山貿(mào)易有限公司版權(quán)所有 地址:深圳市龍崗區(qū)龍崗街道新生社區(qū)新旺路和健云谷2棟B座1002

13823147203
13823147203
在線客服
手機(jī)
13823147203

微信同號(hào)
久久亚洲中文字幕少妇毛片-91蜜臀精品国产自偷在线-日韩av在线播放天堂网-亚洲在线精品一区二区三区| 男女公园上摸下揉视频-日本精品视频一二区-激情久久综合久久人妻-伊人成人综合在线视频| 国产精品美乳在线播放-久久午夜伦鲁鲁片免费-尤物视频免费在线观看-中文在线在线天堂中文| 精品精品国产午夜福利区免费观看-日韩精品一区二区三区2020-一区二区三区精彩视频在线观看-亚洲第一香蕉视频在线| 亚洲精品av一区二区日韩-日韩偷拍精品一区二区三区-亚洲欧美熟妇久久久久久-久草视频福利在线观看| 蜜臀网站视频在线播放-四虎午夜福利视频在线观看-黄色国产精品福利刺激午夜片-亚洲精品国产成人av| 98人妻精品一区二区久久-五月婷婷六月丁香久久综合-国产精品手机在线免费观看-亚洲国产日韩欧美综合| 久久国产精品国产婷婷-四虎在线观看最新入口-天堂中文资源在线天堂-久久亚洲av日韩av天堂| 午夜性色福利在线视频福利-久久精品视频免费获取地址-亚洲一区二区三区在线观看不卡-无套进入美女免费观看视频| 成人午夜伦理在线观看-国产一级做a爰片久久-亚洲精品av一区二区三区-国产色区一区二区三区| 国产精品一线天粉嫩av-亚洲视频在线观看一区二区三-深夜男人福利在线观看-中文字幕国产精品第一页| 国产成人综合激情婷婷-亚洲国产综合在线观看不卡-色综网久久天天综合狼人-亚洲av高清在线不卡| 精品人妻一区二区三区免费-亚洲国产精品久久一区二区-国内久久偷拍视频免费-蜜桃视频在线观看网址| 主播高颜值极品尤物极品-精品少妇人妻av免费看-精品国产免费一区二区久久-成人国产av精品入口在线| 亚洲国产黄色美女视频-成人家庭影院日韩午夜-国产剧情av网址网站-91精品乱码一区二区三区| 日韩精品视频网在线播放-亚洲综合网一区二区三区偷拍-岛国av在线播放观看-欧美日韩国产另类综合| 国产成人精品一区二区日出白浆-亚洲女优大片在线观看-明星换脸av一区二区三区-四虎影院国产精品久久| 色偷偷东京热男人天堂-国产视频久久这里只有精品-美女视频中文字幕人妻-国产一区二区三区在线观| 九九热在线精品视频免费-日韩高清免费在线视频-熟女快要高潮了在线观看-亚洲午夜福利视频一级| 亚洲精品一区中文字幕在线-开心五月综合五月综合-日韩av在线播放中文-国产臀交视频在线观看| 在线看片国产福利你懂得-av中文字幕精品一本久久中文字-亚洲一区二区三在线高清真人-日韩在线不卡视频免费看| 亚洲视频第一页在线观看-最新中文字幕国产精品-中文人妻熟妇人伦精品熟妇-国产福利91在线视频| 亚洲高清日本一区二区三区-日韩极品精品一区二区三区-亚洲成人av在线一区二区-亚洲精品国产精品粉嫩| 久久国产国内精品国语对白-欧美精品欧美极品欧美激情-日韩剧情电影在线播放-97在线免费精品视频| 亚洲成人av综合在线-日韩精品久久久中文字幕人妻-国产精品无套白嫩剧情-五月婷婷久久激情综合| 黑人精品视频一区二区三区-在线播放免费av大片-在线免费观看日韩精品-日本av在线观看一区二区三区| 日本大黄高清不卡视频在线-亚洲色图视频在线观看免费-国内精品自拍视频在线观看-av免费在线观看看看| 日韩av不卡一区二区-国产白丝精品91久久-午夜福利理论片在线播放-国产粉饼哪个牌子好用| 中文中国女厕偷拍视频-男人天堂亚洲天堂av-精品国产一区二区三区香蕉蜜臂-国产亚洲日本精品成人专区| 98人妻精品一区二区久久-五月婷婷六月丁香久久综合-国产精品手机在线免费观看-亚洲国产日韩欧美综合| 国色天香精品亚洲精品-日韩精品电影免费观看-亚洲精品中文字幕综合-成人午夜视频福利在线观看| 在线播放国产av蜜桃-国产精品自拍免费在线-亚洲国产成人综合青青-日韩成人高清在线视频| 成人国产精品中文字幕-国产馆在线精品极品麻豆-国产极品视频一区二区三区-国产一区二区三区无遮挡| 日韩亚洲分类视频在线-熟妇人妻久久中文字幕电-久久麻传媒亚洲av国产-精品丰满熟妇高潮一区| 成熟女人毛茸茸的视频-国产亚洲精品综合一区二区-国产一区二区三区麻豆视频-国产精品自拍实拍在线看| 四虎av免费在线播放-久久精品国产熟女亚洲-日韩美女黄色录像播放-久久亚洲日本熟女精品视频| 人妻av久久人妻水蜜桃-国产一区视频在线二区-五月婷六月丁香久久综合-国产精品中文字幕有码| 日韩av手机在线观看免费-91精品人妻一区二区三区精-最近在线视频免费播放-国产亚洲欧洲在线观看| 精品国产成人一区二区99-午夜爱爱视频最新深夜-午夜福利片中文字幕在线观看-成人性生交大片免费小优| 亚洲一区二区三区视频观看-日韩精品一二三四区视频-亚洲码与欧洲码区别入口-日韩精品大片一区二区三区| 99热亚洲熟女少妇一区二区-久草福利免费在线视频观看-人妻丰满熟妇av一区二区-日韩高清亚洲一区二区|